- refactor: Modulated
- chore: Switch on the top as "Customization"
- chore: Prompt for tasks
- feat: Support more LLM as optional
- feat: Summarization for final answer
- feat: Asynchronous/Thread for faster speed
This commit is contained in:
Alter-xyz 2024-06-28 11:46:06 -04:00
parent f2b73750a8
commit d1d84aa0e3

View File

@ -8,80 +8,130 @@ import time
import datetime import datetime
from concurrent.futures import ThreadPoolExecutor from concurrent.futures import ThreadPoolExecutor
from openai import OpenAI
import google.generativeai as genai
from telebot import TeleBot
from together import Together
from telebot.types import Message
from . import * from . import *
from telegramify_markdown.customize import markdown_symbol from telegramify_markdown.customize import markdown_symbol
#### Cohere init #### # If you want, Customizing the head level 1 symbol
import cohere markdown_symbol.head_level_1 = "📌"
markdown_symbol.link = "🔗" # If you want, Customizing the link symbol
COHERE_API_KEY = environ.get("COHERE_API_KEY")
COHERE_MODEL = "command-r-plus"
# if you want to use cohere for answer it, set it to True
USE_CHHERE = False
USE_CLAUDE = True
if COHERE_API_KEY:
co = cohere.Client(api_key=COHERE_API_KEY)
#### Telegraph init ####
TELEGRA_PH_TOKEN = environ.get("TELEGRA_PH_TOKEN")
ph = TelegraphAPI(TELEGRA_PH_TOKEN)
#### Telegraph done ####
chat_message_dict = ExpiringDict(max_len=100, max_age_seconds=120) chat_message_dict = ExpiringDict(max_len=100, max_age_seconds=120)
chat_user_dict = ExpiringDict(max_len=100, max_age_seconds=20) chat_user_dict = ExpiringDict(max_len=100, max_age_seconds=20)
markdown_symbol.head_level_1 = "📌" # If you want, Customizing the head level 1 symbol
markdown_symbol.link = "🔗" # If you want, Customizing the link symbol
GOOGLE_GEMINI_KEY = environ.get("GOOGLE_GEMINI_KEY") #### Customization ####
Language = "zh-cn" # "en" or "zh-cn".
SUMMARY = "gemini" # "cohere" or "gemini" or None
Extra_clean = True # Will Delete command message
GEMINI_USE = True
CHATGPT_USE = True
COHERE_USE = True
QWEN_USE = True
CLADUE_USE = True
LLAMA_USE = True
genai.configure(api_key=GOOGLE_GEMINI_KEY) #### Telegra.ph init ####
# Will auto generate a token if not provided, restart will lose all TODO
TELEGRA_PH_TOKEN = environ.get("TELEGRA_PH_TOKEN")
# Edit "Store_Token = False" in "__init__.py" to True to store it
ph = TelegraphAPI(TELEGRA_PH_TOKEN)
generation_config = {
"temperature": 0.7,
"top_p": 1,
"top_k": 1,
"max_output_tokens": 8192,
}
safety_settings = [ #### LLMs init ####
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"}, #### OpenAI init ####
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
]
model = genai.GenerativeModel(
model_name="gemini-1.5-flash-latest",
generation_config=generation_config,
safety_settings=safety_settings,
)
#### ChatGPT init ####
CHATGPT_API_KEY = environ.get("OPENAI_API_KEY") CHATGPT_API_KEY = environ.get("OPENAI_API_KEY")
CHATGPT_BASE_URL = environ.get("OPENAI_API_BASE") or "https://api.openai.com/v1" CHATGPT_BASE_URL = environ.get("OPENAI_API_BASE") or "https://api.openai.com/v1"
if CHATGPT_USE and CHATGPT_API_KEY:
from openai import OpenAI
CHATGPT_PRO_MODEL = "gpt-4o-2024-05-13"
client = OpenAI(api_key=CHATGPT_API_KEY, base_url=CHATGPT_BASE_URL, timeout=300)
#### Gemini init ####
GOOGLE_GEMINI_KEY = environ.get("GOOGLE_GEMINI_KEY")
if GEMINI_USE and GOOGLE_GEMINI_KEY:
import google.generativeai as genai
from google.generativeai import ChatSession
from google.generativeai.types.generation_types import StopCandidateException
genai.configure(api_key=GOOGLE_GEMINI_KEY)
generation_config = {
"temperature": 0.7,
"top_p": 1,
"top_k": 1,
"max_output_tokens": 8192,
}
safety_settings = [
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
]
model = genai.GenerativeModel(
model_name="gemini-1.5-flash-latest",
generation_config=generation_config,
safety_settings=safety_settings,
)
model_flash = genai.GenerativeModel(
model_name="gemini-1.5-flash-latest",
generation_config=generation_config,
safety_settings=safety_settings,
system_instruction=f"""
The user asked a question, and multiple AI have given answers to the same question.
Your task is to summarize the responses from them in a concise and clear manner.
The summary should:
In one to two short sentences, as less as possible, and should not exceed 150 characters.
Your must use language of {Language} to respond.
Start with "Summary:" or "总结:"
""",
)
convo = model.start_chat()
convo_summary = model_flash.start_chat()
#### Cohere init ####
COHERE_API_KEY = environ.get("COHERE_API_KEY")
if COHERE_USE and COHERE_API_KEY:
import cohere
COHERE_MODEL = "command-r-plus"
co = cohere.Client(api_key=COHERE_API_KEY)
#### Qwen init ####
QWEN_API_KEY = environ.get("TOGETHER_API_KEY") QWEN_API_KEY = environ.get("TOGETHER_API_KEY")
QWEN_MODEL = "Qwen/Qwen2-72B-Instruct"
CHATGPT_PRO_MODEL = "gpt-4o-2024-05-13"
#### CLAUDE #### if QWEN_USE and QWEN_API_KEY:
from together import Together
QWEN_MODEL = "Qwen/Qwen2-72B-Instruct"
qwen_client = Together(api_key=QWEN_API_KEY)
#### Claude init ####
ANTHROPIC_API_KEY = environ.get("ANTHROPIC_API_KEY") ANTHROPIC_API_KEY = environ.get("ANTHROPIC_API_KEY")
ANTHROPIC_BASE_URL = environ.get("ANTHROPIC_BASE_URL")
ANTHROPIC_MODEL = "claude-3-5-sonnet-20240620"
# use openai for claude # use openai for claude
claude_client = OpenAI( if CLADUE_USE and ANTHROPIC_API_KEY:
api_key=ANTHROPIC_API_KEY, base_url=ANTHROPIC_BASE_URL, timeout=20 ANTHROPIC_BASE_URL = environ.get("ANTHROPIC_BASE_URL")
) ANTHROPIC_MODEL = "claude-3-5-sonnet-20240620"
claude_client = OpenAI(
api_key=ANTHROPIC_API_KEY, base_url=ANTHROPIC_BASE_URL, timeout=20
)
client = OpenAI(api_key=CHATGPT_API_KEY, base_url=CHATGPT_BASE_URL, timeout=300) #### llama init ####
qwen_client = Together(api_key=QWEN_API_KEY, timeout=300) LLAMA_API_KEY = environ.get("GROQ_API_KEY")
if LLAMA_USE and LLAMA_API_KEY:
from groq import Groq
llama_client = Groq(api_key=LLAMA_API_KEY)
LLAMA_MODEL = "llama3-8b-8192"
#### init end ####
def md_handler(message: Message, bot: TeleBot): def md_handler(message: Message, bot: TeleBot):
@ -134,35 +184,7 @@ def latest_handle_messages(message: Message, bot: TeleBot):
print(chat_message_dict[chat_id].text) print(chat_message_dict[chat_id].text)
def get_gpt_answer(message): def answer_it_handler(message: Message, bot: TeleBot) -> None:
chatgpt_reply_text = ""
player_message = [{"role": "user", "content": message}]
try:
r = client.chat.completions.create(
messages=player_message, max_tokens=4096, model=CHATGPT_PRO_MODEL
)
chatgpt_reply_text = r.choices[0].message.content.encode("utf8").decode()
except Exception as e:
print(e)
chatgpt_reply_text = "answer wrong"
return chatgpt_reply_text
def get_claude_answer(message):
chatgpt_reply_text = ""
player_message = [{"role": "user", "content": message}]
try:
r = claude_client.chat.completions.create(
messages=player_message, max_tokens=4096, model=ANTHROPIC_MODEL
)
chatgpt_reply_text = r.choices[0].message.content.encode("utf8").decode()
except Exception as e:
print(e)
chatgpt_reply_text = "answer wrong"
return chatgpt_reply_text
def answer_it_handler(message: Message, bot: TeleBot):
"""answer_it: /answer_it""" """answer_it: /answer_it"""
# answer the last message in the chat group # answer the last message in the chat group
who = "answer_it" who = "answer_it"
@ -172,85 +194,226 @@ def answer_it_handler(message: Message, bot: TeleBot):
latest_message = chat_message_dict.get(chat_id) latest_message = chat_message_dict.get(chat_id)
m = latest_message.text.strip() m = latest_message.text.strip()
m = enrich_text_with_urls(m) m = enrich_text_with_urls(m)
full = "Question:\n" + m + "\n---\n" full_answer = f"Question:\n{m}\n---\n"
##### Gemini #####
#### Answers Thread ####
executor = ThreadPoolExecutor(max_workers=5)
if GEMINI_USE and GOOGLE_GEMINI_KEY:
gemini_future = executor.submit(gemini_answer, latest_message, bot, m)
if CHATGPT_USE and CHATGPT_API_KEY:
chatgpt_future = executor.submit(chatgpt_answer, latest_message, bot, m)
if COHERE_USE and COHERE_API_KEY:
cohere_future = executor.submit(cohere_answer, latest_message, bot, m)
if QWEN_USE and QWEN_API_KEY:
qwen_future = executor.submit(qwen_answer, latest_message, bot, m)
if CLADUE_USE and ANTHROPIC_API_KEY:
claude_future = executor.submit(claude_answer, latest_message, bot, m)
if LLAMA_USE and LLAMA_API_KEY:
llama_future = executor.submit(llama_answer, latest_message, bot, m)
#### Answers List ####
full_chat_id_list = []
if GEMINI_USE and GOOGLE_GEMINI_KEY:
answer_gemini, gemini_chat_id = gemini_future.result()
full_chat_id_list.append(gemini_chat_id)
full_answer += answer_gemini
if CHATGPT_USE and CHATGPT_API_KEY:
anaswer_chatgpt, chatgpt_chat_id = chatgpt_future.result()
full_chat_id_list.append(chatgpt_chat_id)
full_answer += anaswer_chatgpt
if COHERE_USE and COHERE_API_KEY:
answer_cohere, cohere_chat_id = cohere_future.result()
full_chat_id_list.append(cohere_chat_id)
full_answer += answer_cohere
if QWEN_USE and QWEN_API_KEY:
answer_qwen, qwen_chat_id = qwen_future.result()
full_chat_id_list.append(qwen_chat_id)
full_answer += answer_qwen
if CLADUE_USE and ANTHROPIC_API_KEY:
answer_claude, claude_chat_id = claude_future.result()
full_chat_id_list.append(claude_chat_id)
full_answer += answer_claude
if LLAMA_USE and LLAMA_API_KEY:
answer_llama, llama_chat_id = llama_future.result()
full_chat_id_list.append(llama_chat_id)
full_answer += answer_llama
print(full_chat_id_list)
##### Telegraph #####
final_answer(latest_message, bot, full_answer, full_chat_id_list)
if Extra_clean:
bot.delete_message(chat_id, message.message_id)
# def thread_answers(latest_message: Message, bot: TeleBot, m: str):
# #### answers function init ####
# USE = {
# "gemini_answer": GEMINI_USE and GOOGLE_GEMINI_KEY,
# "chatgpt_answer": CHATGPT_USE and CHATGPT_API_KEY,
# "cohere_answer": COHERE_USE and COHERE_API_KEY,
# "qwen_answer": QWEN_USE and QWEN_API_KEY,
# # More LLMs
# }
# results = []
# full_chat_id_list = []
# with ThreadPoolExecutor(max_workers=5) as executor:
# futures = {
# executor.submit(func, latest_message, bot, m): func
# for func, use in USE.items()
# if use
# }
# for future in as_completed(futures):
# try:
# answer, message_id = future.result()
# # Store the answer and message_id
# results.append((message_id, answer))
# full_chat_id_list.append(message_id)
# except Exception as e:
# print(f"\n------\nthread_answers Error:\n{e}\n------\n")
# continue
# # rank the results by message_id
# sorted_results = sorted(results)
# full_chat_id_list.sort()
# # final answer
# full_answer = f"Question:\n{m}\n---\n"
# for _, answer in sorted_results:
# full_answer += answer
# return full_answer, full_chat_id_list
def gemini_answer(latest_message: Message, bot: TeleBot, m):
"""gemini answer"""
who = "Gemini Pro" who = "Gemini Pro"
# show something, make it more responsible
reply_id = bot_reply_first(latest_message, who, bot) reply_id = bot_reply_first(latest_message, who, bot)
#### excutor thread ####
executor = ThreadPoolExecutor(max_workers=5)
chatgpt_thread = executor.submit(get_gpt_answer, m)
claude_thread = None
claude_answer = ""
if ANTHROPIC_API_KEY:
claude_thread = executor.submit(get_claude_answer, m)
try: try:
r = model.generate_content(m, stream=True) r = convo.send_message(m, stream=True)
s = "" s = ""
start = time.time() start = time.time()
for e in r: for e in r:
s += e.text s += e.text
if time.time() - start > 1.5: if time.time() - start > 1.7:
start = time.time() start = time.time()
bot_reply_markdown(reply_id, who, s, bot, split_text=False) bot_reply_markdown(reply_id, who, s, bot, split_text=False)
bot_reply_markdown(reply_id, who, s, bot) bot_reply_markdown(reply_id, who, s, bot)
convo.history.clear()
except Exception as e: except Exception as e:
print(e) print(f"\n------\n{who} function inner Error:\n{e}\n------\n")
convo.history.clear()
bot_reply_markdown(reply_id, who, "Error", bot) bot_reply_markdown(reply_id, who, "Error", bot)
return f"\n---\n{who}:\nAnswer wrong", reply_id.message_id
full += f"{who}:\n{s}" answer = f"\n---\n{who}:\n{s}"
chat_id_list = [reply_id.message_id] return answer, reply_id.message_id
##### ChatGPT #####
def chatgpt_answer(latest_message: Message, bot: TeleBot, m):
"""chatgpt answer"""
who = "ChatGPT Pro" who = "ChatGPT Pro"
reply_id = bot_reply_first(latest_message, who, bot) reply_id = bot_reply_first(latest_message, who, bot)
# get gpt answer using thread
chatgpt_answer = chatgpt_thread.result()
bot_reply_markdown(reply_id, who, chatgpt_answer, bot) player_message = [{"role": "user", "content": m}]
full += f"\n---\n{who}:\n{chatgpt_answer}" try:
chat_id_list.append(reply_id.message_id) r = client.chat.completions.create(
messages=player_message,
max_tokens=4096,
model=CHATGPT_PRO_MODEL,
stream=True,
)
s = ""
start = time.time()
for chunk in r:
if chunk.choices[0].delta.content is None:
break
s += chunk.choices[0].delta.content
if time.time() - start > 1.5:
start = time.time()
bot_reply_markdown(reply_id, who, s, bot, split_text=False)
# maybe not complete
try:
bot_reply_markdown(reply_id, who, s, bot)
except:
pass
##### Claude ##### except Exception as e:
if USE_CLAUDE and ANTHROPIC_API_KEY: print(f"\n------\n{who} function inner Error:\n{e}\n------\n")
who = "Claude Pro" bot_reply_markdown(reply_id, who, "answer wrong", bot)
claude_answer = claude_thread.result() return f"\n---\n{who}:\nAnswer wrong", reply_id.message_id
reply_id = bot_reply_first(latest_message, who, bot)
bot_reply_markdown(reply_id, who, claude_answer, bot)
full += f"\n---\n{who}:\n{claude_answer}" answer = f"\n---\n{who}:\n{s}"
chat_id_list.append(reply_id.message_id) return answer, reply_id.message_id
##### Cohere #####
if USE_CHHERE and COHERE_API_KEY:
full, chat_id = cohere_answer(latest_message, bot, full, m)
chat_id_list.append(chat_id)
else:
pass
##### Telegraph #####
final_answer(latest_message, bot, full, chat_id_list)
def cohere_answer(latest_message: Message, bot: TeleBot, full, m): def claude_answer(latest_message: Message, bot: TeleBot, m):
"""claude answer"""
who = "Claude Pro"
reply_id = bot_reply_first(latest_message, who, bot)
try:
r = claude_client.chat.completions.create(
messages=[{"role": "user", "content": m}],
max_tokens=4096,
model=ANTHROPIC_MODEL,
stream=True,
)
s = ""
start = time.time()
for chunk in r:
if chunk.choices[0].delta.content is None:
break
s += chunk.choices[0].delta.content
if time.time() - start > 1.5:
start = time.time()
bot_reply_markdown(reply_id, who, s, bot, split_text=False)
# maybe not complete
try:
bot_reply_markdown(reply_id, who, s, bot)
except:
pass
except Exception as e:
print(f"\n------\n{who} function inner Error:\n{e}\n------\n")
bot_reply_markdown(reply_id, who, "answer wrong", bot)
return f"\n---\n{who}:\nAnswer wrong", reply_id.message_id
answer = f"\n---\n{who}:\n{s}"
return answer, reply_id.message_id
def cohere_answer(latest_message: Message, bot: TeleBot, m):
"""cohere answer""" """cohere answer"""
who = "Command R Plus" who = "Command R Plus"
reply_id = bot_reply_first(latest_message, who, bot) reply_id = bot_reply_first(latest_message, who, bot)
player_message = [{"role": "User", "message": m}]
try: try:
current_time = datetime.datetime.now(datetime.timezone.utc)
preamble = (
f"You are Command R Plus, a large language model trained to have polite, helpful, inclusive conversations with people. People are looking for information that may need you to search online. Make an accurate and fast response. If there are no search results, then provide responses based on your general knowledge(It's fine if it's not accurate, it might still inspire the user."
f"The current UTC time is {current_time.strftime('%Y-%m-%d %H:%M:%S')}, "
f"UTC-4 (e.g. New York) is {current_time.astimezone(datetime.timezone(datetime.timedelta(hours=-4))).strftime('%Y-%m-%d %H:%M:%S')}, "
f"UTC-7 (e.g. Los Angeles) is {current_time.astimezone(datetime.timezone(datetime.timedelta(hours=-7))).strftime('%Y-%m-%d %H:%M:%S')}, "
f"and UTC+8 (e.g. Beijing) is {current_time.astimezone(datetime.timezone(datetime.timedelta(hours=8))).strftime('%Y-%m-%d %H:%M:%S')}."
)
stream = co.chat_stream( stream = co.chat_stream(
model=COHERE_MODEL, model=COHERE_MODEL,
message=m, message=m,
temperature=0.3, temperature=0.8,
chat_history=player_message, chat_history=[], # One time, so no need for chat history
prompt_truncation="AUTO", prompt_truncation="AUTO",
connectors=[{"id": "web-search"}], connectors=[{"id": "web-search"}],
citation_quality="accurate", citation_quality="accurate",
preamble=f"You are Command R+, a large language model trained to have polite, helpful, inclusive conversations with people. The current time in Tornoto is {datetime.datetime.now(datetime.timezone.utc).astimezone().strftime('%Y-%m-%d %H:%M:%S')}, in Los Angeles is {datetime.datetime.now(datetime.timezone.utc).astimezone().astimezone(datetime.timezone(datetime.timedelta(hours=-7))).strftime('%Y-%m-%d %H:%M:%S')}, and in China is {datetime.datetime.now(datetime.timezone.utc).astimezone(datetime.timezone(datetime.timedelta(hours=8))).strftime('%Y-%m-%d %H:%M:%S')}.", preamble=preamble,
) )
s = "" s = ""
@ -266,13 +429,13 @@ def cohere_answer(latest_message: Message, bot: TeleBot, full, m):
for doc in event.documents: for doc in event.documents:
source += f"\n{doc['title']}\n{doc['url']}\n" source += f"\n{doc['title']}\n{doc['url']}\n"
elif event.event_type == "text-generation": elif event.event_type == "text-generation":
s += event.text.encode("utf-8").decode("utf-8") s += event.text.encode("utf-8").decode("utf-8", "ignore")
if time.time() - start > 0.4: if time.time() - start > 0.8:
start = time.time() start = time.time()
bot_reply_markdown( bot_reply_markdown(
reply_id, reply_id,
who, who,
f"\nStill thinking{len(s)}...", f"\nStill thinking{len(s)}...\n{s}",
bot, bot,
split_text=True, split_text=True,
) )
@ -280,34 +443,212 @@ def cohere_answer(latest_message: Message, bot: TeleBot, full, m):
break break
content = ( content = (
s s
+ "\n------\n------\n" + "\n---\n---\n"
+ source + source
+ f"\n------\n------\nLast Update{datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}" + f"\nLast Update{datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')} at UTC+8\n"
) )
# maybe not complete
try: try:
bot_reply_markdown(reply_id, who, s, bot, split_text=True) bot_reply_markdown(reply_id, who, s, bot, split_text=True)
except: except:
pass pass
except Exception as e: except Exception as e:
print(e) print(f"\n------\n{who} function inner Error:\n{e}\n------\n")
bot_reply_markdown(reply_id, who, "Answer wrong", bot) bot_reply_markdown(reply_id, who, "Answer wrong", bot)
player_message.clear() return f"\n---\n{who}:\nAnswer wrong", reply_id.message_id
return full, reply_id.message_id answer = f"\n---\n{who}:\n{content}"
full += f"\n---\n{who}:\n{content}" return answer, reply_id.message_id
return full, reply_id.message_id
def final_answer(latest_message: Message, bot: TeleBot, full, answers_list): def qwen_answer(latest_message: Message, bot: TeleBot, m):
"""final answer""" """qwen answer"""
who = "Answer" who = "qwen Pro"
reply_id = bot_reply_first(latest_message, who, bot) reply_id = bot_reply_first(latest_message, who, bot)
ph_s = ph.create_page_md(title="Answer it", markdown_text=full) try:
bot_reply_markdown(reply_id, who, f"[View]({ph_s})", bot) r = qwen_client.chat.completions.create(
messages=[{"role": "user", "content": m}],
max_tokens=8192,
model=QWEN_MODEL,
stream=True,
)
s = ""
start = time.time()
for chunk in r:
if chunk.choices[0].delta.content is None:
break
s += chunk.choices[0].delta.content
if time.time() - start > 1.5:
start = time.time()
bot_reply_markdown(reply_id, who, s, bot, split_text=False)
# maybe not complete
try:
bot_reply_markdown(reply_id, who, s, bot)
except:
pass
except Exception as e:
print(f"\n------\n{who} function inner Error:\n{e}\n------\n")
bot_reply_markdown(reply_id, who, "answer wrong", bot)
return f"\n---\n{who}:\nAnswer wrong", reply_id.message_id
answer = f"\n---\n{who}:\n{s}"
return answer, reply_id.message_id
def llama_answer(latest_message: Message, bot: TeleBot, m):
"""llama answer"""
who = "llama"
reply_id = bot_reply_first(latest_message, who, bot)
try:
r = llama_client.chat.completions.create(
messages=[
{
"role": "user",
"content": f"{m}\nMotes: You must use language of {Language} to respond.",
}
],
max_tokens=8192,
model=LLAMA_MODEL,
stream=True,
)
s = ""
start = time.time()
for chunk in r:
if chunk.choices[0].delta.content is None:
break
s += chunk.choices[0].delta.content
if time.time() - start > 1.5:
start = time.time()
bot_reply_markdown(reply_id, who, s, bot, split_text=False)
# maybe not complete
try:
bot_reply_markdown(reply_id, who, s, bot)
except:
pass
except Exception as e:
print(f"\n------\n{who} function inner Error:\n{e}\n------\n")
bot_reply_markdown(reply_id, who, "answer wrong", bot)
return f"\n---\n{who}:\nAnswer wrong", reply_id.message_id
answer = f"\n---\n{who}:\n{s}"
return answer, reply_id.message_id
# TODO: Perplexity looks good. `pplx_answer`
def final_answer(latest_message: Message, bot: TeleBot, full_answer: str, answers_list):
"""final answer"""
who = "Answer it"
reply_id = bot_reply_first(latest_message, who, bot)
ph_s = ph.create_page_md(title="Answer it", markdown_text=full_answer)
bot_reply_markdown(reply_id, who, f"**[Full Answer]({ph_s})**", bot)
# delete the chat message, only leave a telegra.ph link # delete the chat message, only leave a telegra.ph link
for i in answers_list: for i in answers_list:
bot.delete_message(latest_message.chat.id, i) bot.delete_message(latest_message.chat.id, i)
#### Summary ####
if SUMMARY == None:
pass
elif COHERE_USE and COHERE_API_KEY and SUMMARY == "cohere":
summary_cohere(bot, full_answer, ph_s, reply_id)
elif GEMINI_USE and GOOGLE_GEMINI_KEY and SUMMARY == "gemini":
summary_gemini(bot, full_answer, ph_s, reply_id)
else:
pass
def summary_cohere(bot: TeleBot, full_answer: str, ph_s: str, reply_id: int) -> None:
"""Receive the full text, and the final_answer's chat_id, update with a summary."""
who = "Answer it"
# inherit
if Language == "zh-cn":
s = f"**[全文]({ph_s})** | "
elif Language == "en":
s = f"**[Full Answer]({ph_s})** | "
# filter
length = len(full_answer) # max 128,000 tokens...
if length > 50000:
full_answer = full_answer[:50000]
try:
preamble = """
You are Command R Plus, a large language model trained to have polite, helpful, inclusive conversations with people. The user asked a question, and multiple AI have given answers to the same question, but they have different styles, and rarely they have opposite opinions or other issues, but that is normal. Your task is to summarize the responses from them in a concise and clear manner. The summary should:
Be written in bullet points.
Contain between two to ten sentences.
Highlight key points and main conclusions.
Note any significant differences in responses.
Provide a brief indication if users should refer to the full responses for more details.
For the first LLM's content, if it is mostly in any language other than English, respond in that language for all your output.
Start with "Summary:" or "总结:"
"""
stream = co.chat_stream(
model=COHERE_MODEL,
message=full_answer,
temperature=0.4,
chat_history=[],
prompt_truncation="OFF",
connectors=[],
preamble=preamble,
)
start = time.time()
for event in stream:
if event.event_type == "stream-start":
bot_reply_markdown(reply_id, who, f"{s}Summarizing...", bot)
elif event.event_type == "text-generation":
s += event.text.encode("utf-8").decode("utf-8", "ignore")
if time.time() - start > 0.4:
start = time.time()
bot_reply_markdown(reply_id, who, s, bot)
elif event.event_type == "stream-end":
break
try:
bot_reply_markdown(reply_id, who, s, bot)
except:
pass
except Exception as e:
if Language == "zh-cn":
bot_reply_markdown(reply_id, who, f"[全文]({ph_s})", bot)
elif Language == "en":
bot_reply_markdown(reply_id, who, f"[Full Answer]({ph_s})", bot)
print(f"\n------\nsummary_cohere function inner Error:\n{e}\n------\n")
def summary_gemini(bot: TeleBot, full_answer: str, ph_s: str, reply_id: int) -> None:
"""Receive the full text, and the final_answer's chat_id, update with a summary."""
who = "Answer it"
# inherit
if Language == "zh-cn":
s = f"**[全文]({ph_s})** | "
elif Language == "en":
s = f"**[Full Answer]({ph_s})** | "
try:
r = convo_summary.send_message(full_answer, stream=True)
start = time.time()
for e in r:
s += e.text
if time.time() - start > 0.4:
start = time.time()
bot_reply_markdown(reply_id, who, s, bot, split_text=False)
bot_reply_markdown(reply_id, who, s, bot)
convo_summary.history.clear()
except Exception as e:
if Language == "zh-cn":
bot_reply_markdown(reply_id, who, f"[全文]({ph_s})", bot)
elif Language == "en":
bot_reply_markdown(reply_id, who, f"[Full Answer]({ph_s})", bot)
print(f"\n------\nsummary_gemini function inner Error:\n{e}\n------\n")
bot_reply_markdown(reply_id, who, f"{s}Error", bot)
if GOOGLE_GEMINI_KEY and CHATGPT_API_KEY: if GOOGLE_GEMINI_KEY and CHATGPT_API_KEY: